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Corrections to scaling in phase-ordering kinetics
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The leading correction to scaling associated with departures of the initial condition from the scaling mor-
phology is determined for some soluble models of phase-ordering kinetics at zero temperature. The result for
the pair correlation function has the for@(r,t)=fq(r/L)+L"“f(r/L)+---, whereL is a characteristic
length scale extracted from the energy. The correction-to-scaling expanbas the valuav=4 for thed
=1 Glauber model, tha-vector model withn=«, and the approximate theory of Ohta, Jasnow, and Ka-
wasaki. For the approximate Mazenko theory, howewehas a non-trivial valuew=3.8836... ford=2,
and ©=3.903Q... for d=3. The correction-to-scaling functionsf;(x) are also calculated.
[S1063-651%98)09402-3

PACS numbd(s): 64.60.Cn

[. INTRODUCTION the scaling state is much faster than for the other models: for
typical initial conditions the corrections to scaling vanish
The phenomenon of phase-ordering kinetics has attractegkponentially fast as a function of the smallest domain size.
considerable attention in recent ye#ts. It is now well es- It is important to recognize that corrections to scaling can
tablished that, except in certain exceptional circumstances, @ave more than one origin. For a scalar order parameter, for
scaling regime develops at late times, in which the order€xample, in which the morphology is specified by the loca-
parameter morphology is time independent up to one overafions of the domain walls, the scaling regime requires that
time-dependent length scall€t). This means, for example, the domain scale (t) be much larger than the widthof the

that the equal-time pair correlation function of the order pa_walls. Therefore one expects a correction to scaling associ-

_ . ted simply with the nonzero width of domain walls, and
rameter, C(r,t)=(o(x+r,t)p(x,t)) has the asymptotic ated - . N I
scaling formC(r,t) = f[r/L(t)]. Relatively little attention, entering as a power of/L. This is a distinct contribution

however, has been devoted to the study of how the scalinfrom the one conside_red here, WhiCh.iS ass_o_c_iated Wi.th de-
regime is' approached, i.e., the form of “corrections to Scal_gartures from the_.\ scfahng r_norpho_logy n the_ initial cqndmon.
L2 L . This latter contribution will survive even in the thin wall
ing” in phase-ordering kinetics. In particular, an understand-Iimit described by, for example, the Allen-Cahn the6ty6]

ing of corrections to scaling is important in interpreting ex-;, yhich infinitely thin interfaces are driven by their local
perimental or simulation data, and in extracting asymptotiG ryature. Throughout this paper we restrict ourselves to this
scaling exponents and functions. thin-wall limit, or the corresponding “hard-spin” limitor

This article attempts a systematic study of corrections tonjinear sigma modglfor a vector order parameter. This
scaling. We show that there is a correction-to-scaling eXpoteads to useful simplifications.

nentw associated with the deviations of the order parameter Another source of corrections to Sca“ng is thermal fluc-
morphology from the scaling morphology, i.e., with the facttuations. All the results presented here are for quenches to
that the initial state is not in general the Scaling state. Prezero temperature_ For those Systems that exhibit a phase tran-
supposing a suitable definition af(t), which will require  sjtion with a nonzerdr., the leading scaling behavior for a
some discussion, the leading corrections to scaling in the pafjuench to temperatur® is believed to be the same, for all
correlation function enter in the fornmC(r,t)="fy(r/L) T<T., as for a quench toT=0 (apart from some
+L™“fy(r/L), wherefy(x) is the “scaling function” and  temperature-dependent amplitugdse to the “irrelevance”
f1(x) the “correction-to-scaling function.” There are indica- of thermal fluctuations below, [1,7]. Thermal fluctuations
tions thatw is, in general, anontrivial exponenf phase- 4t T>0, however, provide their own corrections to scaling,
ordering kinetics. Although for most of the simple, exactly which will not be discussed explicitly here. We simply note
soluble models presented here it has the valae4, we find  that, in the temperature-related corrections to scaling, the
that it takes nontrivial values within an approximate calcula-temperature enters through the combinafioh, wherey

tion for more realistic models. The models considered are the-q— 1 for scalar fields and— 2 for vector fieldd1,7]. This
one-dimensional1D) Glauber model, thed(n) nonlinear  implies that if the leading “thermal” correction to scaling is
sigma model forn=c, the 1D time-dependent Ginzburg- |inear in T, for example, the thermal correction-to-scaling
Landau(TDGL) equation, the Ohta-Jasnow-KawaséBIK)  exponent will bey. Such a case is realized in the noncon-
approximatior{2] for the general TDGL equation, and lastly served dynamics of th©(n) model withn=2 [7], as may

the Mazenko approximatiofB]. It is the last of these that pe shown explicitly in the limin—c [8].

yi8|d5 nontrivial values fomw. Iﬂfactw enters the theory in The paper is Organized as follows. Section Il deals with
a similar way to the exponent, which describes the decay the 1D Glauber model, and introduces some general con-
of the autocorrelation function and is known to be nontrivial cepts. The large- vector model, 1D TDGL equation, OJK
[4]. For the 1D TDGL equation, we find that the approach totheory, and Mazenko theory, are covered in Secs. IlI-VI,
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respectively. Section VII concludes with a discussion and

summary.

Il. THE ONE-DIMENSIONAL GLAUBER MODEL

In the continuum limit, the equation of motion for the pair

correlation functionC(r,t) has the forn{5]

#C=9°C, C(0t)=1. (1)

1371

f1+axf; +aonf,=Dbxexp —ax?/2), (12

where b=b(2a/m7)¥?=2b. Writing
2)g(x) gives

f1(x) =exp—ax/

g’ —axg +a(w—1)g=bx. (13

What are the boundary conditions ay(x)? Clearly
g(0)=0, becauseC(0t)=1 is already implemented by

The constraintC(0t)=1 can be built in through a source fy(0)=1. Similarly, the conditiond,C(r,t)|,—o=—2I/L,

term atr =0, i.e., we modify the equation of motion to

8,C=d>C+A(t)8(r), 2

whereA(t) is chosen to satisfy the constraint. Let us define

L to be the average domain size. Then fetL, we have

C(r,t)=1-2p,|r|=1-2|r|/L, ®)

from Eq. (3), is already guaranteed bj;(0)=—2, so
g’(0)=0. Furthermore, Eq(13) then givesg”’(0)=0, im-
plying that the series expansion fg(x) starts atO(x°).
Inserting the series solutiom(x)==._39.X" gives g3
=b/6, and the recurrence relatiap,, ,=[a(n+1—)/(n
+1)(n+2)]g, for the higher-order odd coefficients, all even
coefficients vanishing. In order thdt(x) decrease faster

than a power law for large, as required on physical grounds

wherep,,=1/L is the density of domain walls, and we have for initial conditions with only short-range correlations, the
allowed for the pOSSlblIlty of either one or zero walls in an series expansion f(g(x) must terminate. This gives the con-

interval of lengthr. Equation(3) is then correct to order.

Integrating Eq(2) across an infinitesimal interval around correction-to-scaling exponent for the 1D Glauber model is

r=0, and comparing with Eq3), givesA=4/L. Putting this
into Eg. (2), and writing C(r,t) in terms ofr andL in the
form

C(r,t)="1(r/L,L) (4)

gives the following equation fof(x,L):

SANNERTNL N 5
ARy (), 5

where dots and primes indicate derivatives with respett to

andx, respectively.

In the limit L—o, we expectf(x,L) to approach the
L-independent scaling functiofy(x). Balancing powers of

L on the right of Eq.(5) then impliesLL=const, i.e.,L

«t¥2, Including the leading correction to scaling, of relative

orderL™“, we write
L=a/L+b/L* o+, ©6)
f(x,L)=fo(x)+L™fy(x)+ - @

in Eq. (5), and equate terms of leading (%) and next-to-
leading L2~ “) order. This gives

fg+axfy+48(x)=0, 8
f1+axf;+awf;+bxf;=0. 9

Integrating Eq(8) with the boundary condition§(0)=1,
f’(0+)=—2 [from Eqg. (3)] gives (for x=0)

a=2m,

\/5
fo(x)=erf EX .

Equation(9) for f,; becomes

(10

11

dition w=n+1=4,6,8.... We conclude that the leading
w=4, (14
with corresponding correction-to-scaling function
f1(x)=(b/6) x* exp(—ax?/2). (15)

The same result can be obtained either from a direct solution
of Eq. (1) for a general initial conditiof5], or from Glaub-
er's solution[9] of the lattice model.

Ill. THE LARGE- N LIMIT OF THE O(N) MODEL

It is convenient to work with spins of fixed length, i.e.,
with the nonlinear sigma model, to avoid additiofahinter-
esting corrections to scaling associated with the gradual
saturation in the length of the spins as the coarsening pro-
ceeds. The nonconserved dynamics of @) nonlinear
sigma model is described by the equatjd0]

ap=V2¢+(V )29, (16)

corresponding to the equatighd= — 5F/5¢, with free en-
ergy F=1[d% (V )2, subject to the constrairitp(x,t)]?
=1.

In the limit n—o we can replace¥Y ¢)2 by its mean in

the usual way10]. Let us call this meam(t). In the scaling
regime, dimensional analysis givegt) =\/2L?, where\ is
a constant. The energy density is ju$t) = a(t)/2=\/4L2.
It is, in fact, convenient talefine L(t) through this relation
for all timest (in the same spirit as the 1D Glauber model
Then multiplying Eq.(16) by ¢(x+r,t) and averaging over
initial conditions gives the equation

)\
+—C 1
" (17)

for the pair correlation functio(r,t).
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In analogy to our treatment of the 1D Glauber model we The value ofw for then=o0 limit, ®=4, is thus identical
write C(r,t)=f(r/L,L). Then Eq.(17) becomes the follow- to that of the 1D Glauber model, raising the question of
ing equation forf(x,L): whether this could be a general result for models with non-
conserved dynamics. Indeed, the Ohta-Jasnow-Kawasaki
theory discussed in Sec. V gives the same result. The related

NETRAE (18)  approach of MazenkéSec. VI, however, gives a different,
and indeed nontrivial, result. In the following section, we
discuss another model with#4.

L of

2L |2

4 ——f'+5f

Inserting the formg6) and(7) (takinga= 1/2 without loss of
generality, and equating coefficients of the termd.in? and
L~ (2+) 35 pefore gives IV. THE ONE-DIMENSIONAL TDGL EQUATION

Another exactly soluble modéin a suitable limi is the

" — X\ ., Ao time-dependent Ginzburg-Landaier TDGL) equation in
f°+( x ta)fotz10=0, 19 one dimension. This reads
Cd-1 x| o\ b h=3dp=V'(¢), (23
f1+ —+Z f1+ §+Z f1+§XfO=0. (20)
X where ¢(x,t) is the order-parameter field and(¢) is a

potential function, with a symmetric double-well structure.

Consider firstfy. The two linearly independent solutions For convenience, we can take the minima\bto be até

have largex behavior~x ! and~ex.p(—x2/8)..The power- — _ .1 Equation(23) represents the simple relaxational dy-
!aw term .m.u.5t be apsent fpr a physical solution correspondﬁamics dyp=— 6FI 8¢, with free-energy functionaF[ ¢]

ing t.o an initial cond|t|20n with only short-range co[/relatlons. = [dx [(2,$)%2+V(¢)]. In higher dimensions, this equa-
Setting fo(x) =,exp(—x/8) 9o(x) in EQ. (19) givesgo+[(d  ion can be reduced to the standard model of curvature-
—1)/x—x/4]go+(N/2—d/4)go=0. The boundary condi- griven growth[6,1], whereby the domain walls move with a
tions aregy(0)=1, go(0)=0 (the latter being required by velocity proportional to their local curvature. In one dimen-
the differential equation, to avoid a singularity>at0). To  sjon, of course, the domain walls are points, and domain
retain the Gaussian tail ify, the series solution fag, must  coarsening is driven by the exponentially weak forces be-
terminate. This fixed =d/2+n (n=0,1,2...),withacor-  tween adjacent walls, mediated by the exponential tails of
responding set of polynomial solutions fgy, the first two of  the domain-wall profiles.

which areg{”’=1, andg{"’=1—x?4d. An explicit solution For the case of interest, where the typical domain kiz

of C for a general initial condition shows that these differentlarge compared to the width of a wall, the closest pair of
scaling solutions are selected by the snkaliehavior of the domain walls annihilate while the remaining walls hardly
structure factorS(k,t) [the Fourier transform o€(r,t)], at move at all, leading to the following simplified moddl1].
t=0. The polynomial solutiom{"” corresponds to an initial The smallest domain is combined with its two neighbors to
condition withS(k,0)e (k?)" for k—0. A generic initial con- form a new single domain. This process is then repeated.
dition, therefore, selects the=0 solution, i.e.x=d/2 and  Eventually the system reaches a scaling state in which the

fo(X) =exp(—x%8). distributionP(l,a) of domain sized, when the smallest do-
Consider now the correction-to-scaling functibp Put-  Main size isa, has the scaling forn®(l,a)=a"*f(l/a).
ting f1(x)=exp(=x%8)g,(x) in Eq. (20), with \=d/2 and An important feature of this process is that if the domain
fo(X) =exp(—x%/8), gives sizes are initially uncorrelated they remain uncorrelated, be-
cause the merging of three domains into a single domain
d—1 ) b introduces no correlationd 2,13. It is then straightforward
g1+ ~ 2 914‘291: §X2- (21)  to derive an equation of motion for the evolution of the dis-

tribution P(l,a) asa increase$11-13:

Again one seeks a series solution fpf(x). The boundary
conditionsg;(0)=0=g;(0) imply that the series has the
form g,(X)==/_,g,Xx". Substituting this into the differen- I-2a
tial equation one readily finds that,=0 for n odd, g,=0, XJ
9,=b/[32(d+2)], and gp,2=[(n— w)/4(n+2)(n+d)]g,

for evenn=4. For a physically sensible largebehavior, Introducing the Laplace transform with respect to
the series must terminate, just as in the one—dimensionz@(p,a):fgpu,a)exp(_p|) dl, gives

Glauber model. This requires=4,6,8 . ... Foreach such

w, there is a corresponding correction-to-scaling function. dplda=—P(a,a)exp—pa)(1— ¢?). (25
The generic case, corresponding to short-range correlations ) ) ) )
in the initial condition, is the smallest value af, i.e., This equation can, in fact, be integrated exati§] but, in

=4, with g,(x)=bx%32(d+2). The correction-to-scaling the spirit of the previous sections, we shall first look for
function is then solutions of the form

dP/ga=—P(a,a)d(l—a)+ 6(l—3a)P(a,a)

P("a)P(I—I"—a,a)dl". (24

a

) 5 p( Xz) #(p a)=¢>(pa)+i¢(pa)+... (26)
fl(X)—meX 5/ (22) ' , = |
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1 1 distributions flows to the “generic” fixed distribution with

P(a,a)= 5f0(1)+ o f(D+- (270 fo(1)=1/2(which may easily be shown to have an exponen-
a® tial tai).

i i i We have shown that any finite correction-to-scaling expo-

wherefy(x), f1(x) are the scaling and correction-to-scaling hen,, corresponds to a correction-to-scaling function with a

functions for the domain-size distributiodhy, ¢, are the 4y er-jaw tail. This implies that corrections to scaling that
corresponding Laplace transforms, aads the correction- decay faster than any power-law in the scaling variable

to-scaling exponent as usual. Inserting EF) and (27)  paye an infinite correction to scaling exponent, i.e., that the
into Eq. (25), and equating leading and subleading termsymjitude of the correction does not have the power-law

gives form a~“ assumed in Eq(26). To clarify this case, we con-
struct the exact solution of Eq25) for an arbitrary initial

deg exp(—s)

v T 1— 2 condition:
4o = oL —5—(1-¢)), (28)
do; (o exp(—s) ¢(p,a)=tanf“ada’P(a’,a’) exp—pa’)|. (32
gs |5 T2fe()——¢o| ¢
The arbitrary function ofp that formally appears inside the
— (1) eXli—S)(l_ 2) 29 argument of the tanh, as an additive integration constant,
! S o), must vanish becausé(p,»~)=0. The functionP(a,a) ap-

pearing in Eq(32) is determined by the initial condition, for
where s=pa. With the boundary conditionspy()=0  which a=a,, through the inverse Laplace transform
(which follows from the definition of¢y) and ¢,(0)=0
[which follows from the normalization of(l,a)], these 1+ ¢(p.ao)
equations can be integrated to give 1—-¢(p,ag)

dp

P(a,a)=fc4— exp(pa) In( , (33

i

edt where the contou€ runs parallel to the imaginary axis, to
d’O(S):tam‘( fO(l)L Texp(—t)), (30 the right of any singularities of the integrand. An equivalent
result has been presented[it4]. The present approach is
more direct and general.
dt exp(—t). (31 Equations(32) and (33) represent an exact closed-form
tite solution for the full evolution from an arbitrary initial con-
dition. For explicit results, however, one needs to be able to
Consider first the scaling functiofy(s). For smalls, one  evaluate the Bromwich integrdB3). For illustrative pur-
obtains  ¢o(s)=1—2e?oMr 2+ ... where 7y  poses, we consider two simple initial conditions. The first is
=0.577 ... isEuler's constant. But, from the definition of the simple exponential distributioP(l,0)=uexp(—ul),
¢o(s) as the Laplace transform ofy(x), one also has with the Laplace transforng(p,0)=w/(p+u) (i.e.,a0=0
do(S)=1—s(X)o+ - - -, where(x)q is the mean domain size herg. Inserting this in Eq(33) gives
(in units of the minimum domain siza) for the scaling 1
distribution. Comparing these expansions gi¥g&l)<1/2, T _
with fo(1)=1/2 when the first moment dfy(x) exists, and P(a.a) Za[l exp(—2pa)], (34
fo(1)<1/2 when it does not. We shall primarily consider the

former case, appropriate to an initial distribution with a finite One sees tha®(a,a) approaches the scaling limit Hz2x-
first moment. ponentially fast as a function @f, i.e., faster than any power.

Now consider the smal-behavior of the correction-to- This is in accord with our result that a power-law correction
scaling functiong,(s). The factor 1_4,3(5) in Eq. (31) be- to sca_lllng is qssqua_ted with p.ower-law t_euls in the initial
haves as?0®) for s 0, i.e., ass for fo(1)=1/2. For this domaln-S|ze_ distribution. Insertmg E@34) into Eq. (32),
case, the smali-expansion of$,(s) contains a nonanalytic 2nd €xpanding fopa>1, gives
term st ¢ for any >0 (with a Ins factor whenw is an 1
intege). This in turn implies that the correction-to-scaling ¢(p,a)= ¢o(s)— ——exp(—2ua) exp—S)[1— ¢o(s)?]
function f;(x) has the power-law taik~(2*<), This means 4pa
that if the domain-size distribution is given by the scaling 4.
distributionfy(x) plus a small perturbation with a power-law
tail x (2*¢) the perturbation isrrelevant (i.e., decays to whereg,(s) (with s=pa) is the scaling function. Again, the
zerg for >0, andthe correction-to-scaling exponent is correction is exponentially small.

More generally, any initial distribution with a power-law tail Our second example shows that the correction to scaling
x~(2*9) with »>0, flows to the scaling distributiof(x) can be an oscillatory function ofa. For P(l,0)

with fo(1)=1/2. Forw<0, the perturbation is relevant. In = u?lexp(—ul), one obtainsp(p,0)=u?/(p+ x)?2. Inserting
this connection one should note that the scaling distributionthis into Eq. (33) gives P(a,a)=[1—2cosua)exp(—ua)

with fo(1)<1/2 have the power-law tait "[1*2fo(M)] je.  +exp(—2ua)]/2a, so that the leading correction to scaling is
they decay morsslowly than 1k2. So any initial condition the term involving cog¢a). The difference between this case
that falls off more quickly than one of these “special” fixed and the first example is that in the former the singularities of

b1(s)=f1(1)s[1— d2(5)] f
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d—1 X

the functionh(p)=In{[1+¢(p,0)]/[1— ¢(p,0)]} appearing -1 x
4

d+w
in Eq. (33) are branch points on the real axis@t0 and yi+ 71+(T
—2u, whereas in the latter they are branch pointpatO,
—(1xi)u and —2u. The leading scaling part 1#2in In fact these equations are identical to EG<®) and (20) of
P(a,a) is associated with the singularity df(p) at p=0. the largen theory, with the same boundary conditions, and
The leading correction to scaling derives from the singularitythe results fory, andy; can be simply read off:
with the largest real pafexcludingp=0). If this singularity

b
Nt5x%=0. (39

is off the real axis, the leading correction to scaling will be Yo(X)=exp(—x?/8), (40
oscillatory. In all the other models considered in this paper, 5
however, the leading correction to scaling is monotonically y1(X)=[bx*/32(d+2)] exp(—x%/8). (41)

decreasing function of time. ) , , )
The correction-to-scaling exponentds=4, as in the larger

theory.
The order-parameter correlation functi@fr,t) has the
The theory of Ohta, Jasnow, and Kawas@®JK) [2] for ~ expansionC(r,t)=fo(r/L)+L"“f,(r/L)+---. The func-

the pair correlation function of a nonconserved scalar fieldions fy(x) and f;(x) follow immediately from Eqs(37),

starts from the Allen-Cahn equation relating the interface(40), and(41):

velocity to its local curvaturg6]. The theory is expressed in

terms of a “smooth” auxiliary fieldn(x,t) whose zeros give

the positions of the interfaces between domains of the two

phases. The fieldn obeys the diffusion equatio@m/Jt

=V?2m (we absorb the diffusion constant into the time sgale 2 y1(X)

The initial conditions are taken to be Gaussian. The normal- f1(x)= A 2012

ized pair correlation function af is [1=%(x)]

V. THE OJK THEORY

2
fo(x)=— sinyp(x), 42

(43

(m(x,t) m(x+r,t)) Note thatf,(x)~x3 for smallx, so that the linear term ir
, (36)  from f is not modified—our definition of has ensured that
(m(x,1)%) areal density of domain walls, and therefore the energy, var-
ies as 1L exactly.

y(r,t)=

while the correlation function for the order-parameter figld
IS VI. THE MAZENKO THEORY
2 H [ H "
C(r.t)=(sgim(x.t)] sgfm(x+r.t)])= —sin~Ly(r.t). An alternative “Gaussian closure” theory to that of OJK
(rH={sgrim(x)] sgrim( ) T Y has been proposed by Mazeri&. For nonconserved scalar
(37)  fields, the pair correlation functioB(r,t) satisfies the closed

. . equation
Note that by using the sgn function to relate the order pa- a

rameter to the auxiliary field we are working in the “thin 1 6C 1 T

wall” limit. This means that we are neglecting any correc- > E:VZCJF 7S50 tar(E C)- (44)
tions to scaling associated with the finite width of the domain

wallls, and are focusing instead on corrections deriving fromrpe functionSy(t) is defined agm(r,t)2), wherem is a
the initial conditions. This is the same approach that we argsayssian auxiliary field as before. For the present purposes,
using throughout_ this paper. however, it is sufficient to note thaf, has dimensions

_ Itis simplest, in the first instance, to compute the correc|engthf. In fact, it is convenient to define the coarsening
tions to scaling associated with the functiefr,t). If we length scale(t) by S;=L2/\, where is a constant whose
define h(r,t)=(m(x,t) m(x+r.t)), then y(r,t)=h(r,t)/  yae is fixed by physical requiremeri@j. This definition of
h(01t). From the diffusion equation fam, one obtains im- | s in accord with our previous definitions, as we shall see.
mediately (1/2j:h=V?h, giving (L/2)d,y=V2y+a(t)y, Writing Sp=L2/\ in Eq. (44), settingC(r,t)="fq(r/L)
where a(t)=—[4,Inh(0)}/2. Sinceh satisfies a diffusion | ~of (;/L)+.... dL/dt=1/2L+b/L1*®+-.., and
equation, we know that for a short-ranged initial condition,equating leading and next-to-leading powers Lofin the

peaked around =0, h(0})~t~%? asymptotically, giving ysyal way gives the following equations for the functions
a(t)—d/4t for larget. It is convenient, however, to incor- f (xy andf,(x):

porate corrections to scaling in(t) through the requirement

that a(t)=\/2L2 exactly, i.e., (1/2§;y=V2y+(\/2L?)y.

Choosing the scale of such thatL—t¥? asymptotically fo+
then fixesh=d/2, as in the larger theory. Writing y(r,t)

d—1+x
X 4

tr 2 o Tt | =0 45
o+;ta 5fo/=0, (45)

= yo(r/L)+ L~ “y,(r/L), andL=1/2L+b/L***, as usual, Lo (d=1 x|, A T o b
substituting into the equation for, and equating leading and ~ f1+| ——+ 7|15 sec 5 fo|fat 4 f1+ 5xfo=0.
next-to-leading powers df, gives (46)
, (d=1 x| | Equation (45) is to be solved with boundary conditions
70+( t ) vtz %=0, (B8 ¢ (0)=1, f'(0)=— (Lm)[2n/(d—1)]*2 the latter follow-
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FIG. 1. The scaling functiorig(x) in the Mazenko theory for FIG. 2. The correction-to-scaling functidn(x) in the Mazenko
d=2. theory ford=2.

ing from a smallx analysis of the equation. The parameter

is determined as followg3]. For largex, Eq. (45) reduces to  this paper we have computed the correction-to-scaling expo-
the linear equationfj+[(d—1)/x+x/4]fi+(N/2)f;=0. nentsw, and the corresponding correction-to-scaling func-
This equation has the same form as the largeuation(19),  tions, for a number of models of phase-ordering dynamics.
and the two linearly independent largesolutions have the For simplicity we have focused on the correction to scaling
largex forms x~2* and ~exp(—x?/8) discussed in Sec. lll. associated with the approach of the order-parameter mor-
If the equation is integrated forward fror=0, for general  phology to its scaling form, i.e., the correction arising from a
A\ a linear combination of the two largesolutions will be  nonscaling initial condition, and have suppressed contribu-

obtained. But a power-law decay is unphysical if the initial i, g associated with, for example, the finite thickness of the
conditions contain only short-range spatial correlations. Th%omain walls by working in the thin-wall limit

parameten is fixed by the requirement that this unphysical .
power-law decay be absent. Imposing this condition througtgh In E'OTple (‘;’O:UbledTr?d%i;l:ﬁh as tthhe D Glaub(:rkmodel,
a numerical solution of Eq45) gives \=0.711 277 ford €n=c> model, and the eory, Ihe exponentaxes

=2, and\=1.327 411 ford=3 (correct to the number of &n integer valuew=4. Within the Mazenko theory, how-
figures given. The exponenh_,which describes the decay of ever,w takes nontrivial Va'_“?s’ suggesting that this exponent
the autocorrelation function vidb(x,t) (x,0))~L(t) ™, is is, in general, anew nontnwal_exponend)f phase-_orderlng

) e o kinetics. The 1D TDGL equation is anomalous in that cor-
g(')\ﬁtr;oayi)‘:rg(;ce\’rvgg'gr;[gig}gorym]' Ford—, the OJK (o tions to scaling vanish exponentially fast as a function of

; o . : - the smallest domain size.

The correction to scaling is determined in a similar way tis | hat th | of di
from Eq. (46). The boundary conditions on this equation are _ . t1s important to note that t € values compute n-
f,(0)=0="f/(0). Forlargex, the homogeneous part of this this paper c_orrespond to a special, though natural,_deflnltlon
equation(i.e., without the final termreduces to the homo- ©f the domain scale through the mean energy density. Spe-
geneous part of the equivalent lamgeequation(20). The  cifically the energy density is defined to be exactly Wip to
two linearly independent large-solutions decay as-exp an overall constahffor the scalar models, i.e., the areal den-
(—x%/8) and~x~?*"“, The exponeni is determined by the sity of domain walls is proportional to 1/ except for the 1D
condition that the power-law decaying term is absent fromlfDGL equation where the scale length was conveniently
the largex solution. Implementing this condition numeri- chosen to be the size of the smallest domain. For the large-

cally gives w=3.8836 ford=2 and @=3.9030 ford=3.  nonlinear sigma model, the energy density is defined to be
Ford—oo, the OJK resuliw=4 is recovered.

functions ford=2 (those ford=3 are very similar. The . . . -
amplitudeof the correction to scaling function is fixed by the to scaling, expressed in terms bf i.e. they maximizaw.

constanb in equation(46). The valueb=2 was used in Fig. In the present paper we have considered systems with
2 nonconserved order parameter only. In future work we hope

Note that, within the Mazenko approach, the exponent !0 discuss corrections to scaling in systems with conserved
is nontrivial. Indeed in this theory is on the same footing order parameter.
as\, which is known to be nontrivial in general. This sug-

gests that, likex, the correction-to-scaling exponedatis in
general a nontrivial exponent of phase-ordering kinetics. ACKNOWLEDGMENTS
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