
PHYSICAL REVIEW E FEBRUARY 1998VOLUME 57, NUMBER 2
Corrections to scaling in phase-ordering kinetics

A. J. Bray, N. P. Rapapa, and S. J. Cornell
Department of Physics and Astronomy, The University, Manchester M13 9PL, United Kingdom

~Received 19 September 1997!

The leading correction to scaling associated with departures of the initial condition from the scaling mor-
phology is determined for some soluble models of phase-ordering kinetics at zero temperature. The result for
the pair correlation function has the formC(r ,t)5 f 0(r /L)1L2v f 1(r /L)1•••, whereL is a characteristic
length scale extracted from the energy. The correction-to-scaling exponentv has the valuev54 for the d
51 Glauber model, then-vector model withn5`, and the approximate theory of Ohta, Jasnow, and Ka-
wasaki. For the approximate Mazenko theory, however,v has a non-trivial value:v53.8836, . . . for d52,
and v53.9030, . . . for d53. The correction-to-scaling functionsf 1(x) are also calculated.
@S1063-651X~98!09402-3#
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I. INTRODUCTION

The phenomenon of phase-ordering kinetics has attra
considerable attention in recent years@1#. It is now well es-
tablished that, except in certain exceptional circumstance
scaling regime develops at late times, in which the ord
parameter morphology is time independent up to one ove
time-dependent length scaleL(t). This means, for example
that the equal-time pair correlation function of the order p
rameter, C(r ,t)5^f(x1r ,t)f(x,t)& has the asymptotic
scaling formC(r ,t)5 f @r /L(t)#. Relatively little attention,
however, has been devoted to the study of how the sca
regime is approached, i.e., the form of ‘‘corrections to sc
ing’’ in phase-ordering kinetics. In particular, an understan
ing of corrections to scaling is important in interpreting e
perimental or simulation data, and in extracting asympto
scaling exponents and functions.

This article attempts a systematic study of corrections
scaling. We show that there is a correction-to-scaling ex
nentv associated with the deviations of the order parame
morphology from the scaling morphology, i.e., with the fa
that the initial state is not in general the scaling state. P
supposing a suitable definition ofL(t), which will require
some discussion, the leading corrections to scaling in the
correlation function enter in the formC(r ,t)5 f 0(r /L)
1L2v f 1(r /L), where f 0(x) is the ‘‘scaling function’’ and
f 1(x) the ‘‘correction-to-scaling function.’’ There are indica
tions thatv is, in general, anontrivial exponentof phase-
ordering kinetics. Although for most of the simple, exac
soluble models presented here it has the valuev54, we find
that it takes nontrivial values within an approximate calcu
tion for more realistic models. The models considered are
one-dimensional~1D! Glauber model, theO(n) nonlinear
sigma model forn5`, the 1D time-dependent Ginzburg
Landau~TDGL! equation, the Ohta-Jasnow-Kawasaki~OJK!
approximation@2# for the general TDGL equation, and last
the Mazenko approximation@3#. It is the last of these tha
yields nontrivial values forv. In fact v enters the theory in
a similar way to the exponentl̄, which describes the deca
of the autocorrelation function and is known to be nontriv
@4#. For the 1D TDGL equation, we find that the approach
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the scaling state is much faster than for the other models
typical initial conditions the corrections to scaling vani
exponentially fast as a function of the smallest domain s

It is important to recognize that corrections to scaling c
have more than one origin. For a scalar order parameter
example, in which the morphology is specified by the loc
tions of the domain walls, the scaling regime requires t
the domain scaleL(t) be much larger than the widthj of the
walls. Therefore one expects a correction to scaling ass
ated simply with the nonzero width of domain walls, an
entering as a power ofj/L. This is a distinct contribution
from the one considered here, which is associated with
partures from the scaling morphology in the initial conditio
This latter contribution will survive even in the thin wa
limit described by, for example, the Allen-Cahn theory@1,6#
in which infinitely thin interfaces are driven by their loca
curvature. Throughout this paper we restrict ourselves to
thin-wall limit, or the corresponding ‘‘hard-spin’’ limit~or
nonlinear sigma model! for a vector order parameter. Thi
leads to useful simplifications.

Another source of corrections to scaling is thermal flu
tuations. All the results presented here are for quenche
zero temperature. For those systems that exhibit a phase
sition with a nonzeroTc , the leading scaling behavior for
quench to temperatureT is believed to be the same, for a
T,Tc , as for a quench toT50 ~apart from some
temperature-dependent amplitudes! due to the ‘‘irrelevance’’
of thermal fluctuations belowTc @1,7#. Thermal fluctuations
at T.0, however, provide their own corrections to scalin
which will not be discussed explicitly here. We simply no
that, in the temperature-related corrections to scaling,
temperature enters through the combinationT/Ly, wherey
5d21 for scalar fields andd22 for vector fields@1,7#. This
implies that if the leading ‘‘thermal’’ correction to scaling i
linear in T, for example, the thermal correction-to-scalin
exponent will bey. Such a case is realized in the nonco
served dynamics of theO(n) model withn>2 @7#, as may
be shown explicitly in the limitn→` @8#.

The paper is organized as follows. Section II deals w
the 1D Glauber model, and introduces some general c
cepts. The large-n vector model, 1D TDGL equation, OJK
theory, and Mazenko theory, are covered in Secs. III–
1370 © 1998 The American Physical Society
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57 1371CORRECTIONS TO SCALING IN PHASE-ORDERING KINETICS
respectively. Section VII concludes with a discussion a
summary.

II. THE ONE-DIMENSIONAL GLAUBER MODEL

In the continuum limit, the equation of motion for the pa
correlation functionC(r ,t) has the form@5#

] tC5] r
2C, C~0,t !51. ~1!

The constraintC(0,t)51 can be built in through a sourc
term atr 50, i.e., we modify the equation of motion to

] tC5] r
2C1A~ t !d~r !, ~2!

whereA(t) is chosen to satisfy the constraint. Let us defi
L to be the average domain size. Then forr !L, we have

C~r ,t !5122rwur u5122ur u/L, ~3!

whererw51/L is the density of domain walls, and we hav
allowed for the possibility of either one or zero walls in a
interval of lengthr . Equation~3! is then correct to orderr .

Integrating Eq.~2! across an infinitesimal interval aroun
r 50, and comparing with Eq.~3!, givesA54/L. Putting this
into Eq. ~2!, and writingC(r ,t) in terms ofr and L in the
form

C~r ,t !5 f ~r /L,L ! ~4!

gives the following equation forf (x,L):

L̇
] f

]L
5

1

L2
f 91

L̇

L
x f81

4

L2
d~x!, ~5!

where dots and primes indicate derivatives with respectt
andx, respectively.

In the limit L→`, we expect f (x,L) to approach the
L-independent scaling functionf 0(x). Balancing powers of
L on the right of Eq.~5! then impliesL̇L5const , i.e.,L
}t1/2. Including the leading correction to scaling, of relati
orderL2v, we write

L̇5a/L1b/L11v1•••, ~6!

f ~x,L !5 f 0~x!1L2v f 1~x!1••• ~7!

in Eq. ~5!, and equate terms of leading (L22) and next-to-
leading (L222v) order. This gives

f 091ax f0814d~x!50, ~8!

f 191ax f181av f 11bx f0850. ~9!

Integrating Eq.~8! with the boundary conditionsf (0)51,
f 8(01)522 @from Eq. ~3!# gives ~for x>0)

a52p, ~10!

f 0~x!5erfcSAa

2
xD . ~11!

Equation~9! for f 1 becomes
d

e

f 191ax f181av f 15 b̃xexp~2ax2/2!, ~12!

where b̃5b(2a/p)1/252b. Writing f 1(x)5exp(2ax2/
2)g(x) gives

g92axg81a~v21!g5 b̃x. ~13!

What are the boundary conditions ong(x)? Clearly
g(0)50, becauseC(0,t)51 is already implemented by
f 0(0)51. Similarly, the condition ] rC(r ,t)ur 50522/L,
from Eq. ~3!, is already guaranteed byf 08(0)522, so
g8(0)50. Furthermore, Eq.~13! then givesg9(0)50, im-
plying that the series expansion forg(x) starts atO(x3).
Inserting the series solutiong(x)5(n53

` gnxn gives g3

5 b̃ /6, and the recurrence relationgn125@a(n112v)/(n
11)(n12)#gn for the higher-order odd coefficients, all eve
coefficients vanishing. In order thatf 1(x) decrease faste
than a power law for largex, as required on physical ground
for initial conditions with only short-range correlations, th
series expansion forg(x) must terminate. This gives the con
dition v5n1154,6,8, . . . . We conclude that the leading
correction-to-scaling exponent for the 1D Glauber model

v54, ~14!

with corresponding correction-to-scaling function

f 1~x!5~ b̃ /6! x3 exp~2ax2/2!. ~15!

The same result can be obtained either from a direct solu
of Eq. ~1! for a general initial condition@5#, or from Glaub-
er’s solution@9# of the lattice model.

III. THE LARGE- N LIMIT OF THE O„N… MODEL

It is convenient to work with spins of fixed length, i.e
with the nonlinear sigma model, to avoid additional~uninter-
esting! corrections to scaling associated with the grad
saturation in the length of the spins as the coarsening
ceeds. The nonconserved dynamics of theO(n) nonlinear
sigma model is described by the equation@10#

] tfW 5¹2fW 1~¹fW !2fW , ~16!

corresponding to the equation] tfW 52dF/dfW , with free en-
ergy F5 1

2 *ddx (¹fW )2, subject to the constraint@fW (x,t)#2

51.
In the limit n→` we can replace (¹fW )2 by its mean in

the usual way@10#. Let us call this meana(t). In the scaling
regime, dimensional analysis givesa(t)5l/2L2, wherel is
a constant. The energy density is juste(t)5a(t)/25l/4L2.
It is, in fact, convenient todefine L(t) through this relation
for all times t ~in the same spirit as the 1D Glauber mode!.
Then multiplying Eq.~16! by f(x1r ,t) and averaging over
initial conditions gives the equation

1

2

]C

]t
5¹2C1

l

2L2
C ~17!

for the pair correlation functionC(r ,t).
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1372 57A. J. BRAY, N. P. RAPAPA, AND S. J. CORNELL
In analogy to our treatment of the 1D Glauber model
write C(r ,t)5 f (r /L,L). Then Eq.~17! becomes the follow-
ing equation forf (x,L):

L̇

2

] f

]L
5

1

L2S f 91
d21

x
f 81

l

2
f D1

L̇

2L
x f8. ~18!

Inserting the forms~6! and~7! ~takinga51/2 without loss of
generality!, and equating coefficients of the terms inL22 and
L2(21v) as before gives

f 091S d21

x
1

x

4D f 081
l

2
f 050, ~19!

f 191S d21

x
1

x

4D f 181S l

2
1

v

4 D f 11
b

2
x f0850. ~20!

Consider firstf 0. The two linearly independent solution
have large-x behavior;x22l and;exp(2x2/8). The power-
law term must be absent for a physical solution correspo
ing to an initial condition with only short-range correlation
Setting f 0(x)5exp(2x2/8) g0(x) in Eq. ~19! givesg091@(d
21)/x2x/4#g081(l/22d/4)g050. The boundary condi-
tions areg0(0)51, g08(0)50 ~the latter being required by
the differential equation, to avoid a singularity atx50). To
retain the Gaussian tail inf 0, the series solution forg0 must
terminate. This fixesl5d/21n (n50,1,2, . . . ), with a cor-
responding set of polynomial solutions forg0, the first two of
which areg0

(0)51, andg0
(1)512x2/4d. An explicit solution

of C for a general initial condition shows that these differe
scaling solutions are selected by the small-k behavior of the
structure factor,S(k,t) @the Fourier transform ofC(r ,t)#, at
t50. The polynomial solutiong0

(n) corresponds to an initia
condition withS(k,0)}(k2)n for k→0. A generic initial con-
dition, therefore, selects then50 solution, i.e.,l5d/2 and
f 0(x)5exp(2x2/8).

Consider now the correction-to-scaling functionf 1. Put-
ting f 1(x)5exp(2x2/8)g1(x) in Eq. ~20!, with l5d/2 and
f 0(x)5exp(2x2/8), gives

g191S d21

x
2

x

4Dg181
v

4
g15

b

8
x2. ~21!

Again one seeks a series solution forg1(x). The boundary
conditions g1(0)505g18(0) imply that the series has th
form g1(x)5(n52

` gnxn. Substituting this into the differen
tial equation one readily finds thatgn50 for n odd, g250,
g45b/@32(d12)#, and gn125@(n2v)/4(n12)(n1d)#gn
for even n>4. For a physically sensible large-x behavior,
the series must terminate, just as in the one-dimensio
Glauber model. This requiresv54,6,8, . . . . Foreach such
v, there is a corresponding correction-to-scaling functi
The generic case, corresponding to short-range correlat
in the initial condition, is the smallest value ofv, i.e., v
54, with g1(x)5bx4/32(d12). The correction-to-scaling
function is then

f 1~x!5
bx4

32~d12!
expS 2

x2

8 D . ~22!
d-

t

al

.
ns

The value ofv for then5` limit, v54, is thus identical
to that of the 1D Glauber model, raising the question
whether this could be a general result for models with n
conserved dynamics. Indeed, the Ohta-Jasnow-Kawa
theory discussed in Sec. V gives the same result. The rel
approach of Mazenko~Sec. VI!, however, gives a different
and indeed nontrivial, result. In the following section, w
discuss another model withvÞ4.

IV. THE ONE-DIMENSIONAL TDGL EQUATION

Another exactly soluble model~in a suitable limit! is the
time-dependent Ginzburg-Landau~or TDGL! equation in
one dimension. This reads

] tf5]x
2f2V8~f!, ~23!

where f(x,t) is the order-parameter field andV(f) is a
potential function, with a symmetric double-well structur
For convenience, we can take the minima ofV to be atf
561. Equation~23! represents the simple relaxational d
namics ] tf52dF/df, with free-energy functionalF@f#
5*dx @(]xf)2/21V(f)#. In higher dimensions, this equa
tion can be reduced to the standard model of curvatu
driven growth@6,1#, whereby the domain walls move with
velocity proportional to their local curvature. In one dime
sion, of course, the domain walls are points, and dom
coarsening is driven by the exponentially weak forces
tween adjacent walls, mediated by the exponential tails
the domain-wall profiles.

For the case of interest, where the typical domain sizeL is
large compared to the widthj of a wall, the closest pair of
domain walls annihilate while the remaining walls hard
move at all, leading to the following simplified model@11#.
The smallest domain is combined with its two neighbors
form a new single domain. This process is then repea
Eventually the system reaches a scaling state in which
distributionP( l ,a) of domain sizesl , when the smallest do
main size isa, has the scaling formP( l ,a)5a21f ( l /a).

An important feature of this process is that if the doma
sizes are initially uncorrelated they remain uncorrelated,
cause the merging of three domains into a single dom
introduces no correlations@12,13#. It is then straightforward
to derive an equation of motion for the evolution of the d
tribution P( l ,a) asa increases@11–13#:

]P/]a52P~a,a!d~ l 2a!1u~ l 23a!P~a,a!

3E
a

l 22a

P~ l 8,a!P~ l 2 l 82a,a!dl8. ~24!

Introducing the Laplace transform with respect tol ,
f(p,a)5*0

`P( l ,a)exp(2pl) dl, gives

]f/]a52P~a,a!exp~2pa!~12f2!. ~25!

This equation can, in fact, be integrated exactly@14# but, in
the spirit of the previous sections, we shall first look f
solutions of the form

f~p,a!5f0~pa!1
1

av
f1~pa!1•••, ~26!
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57 1373CORRECTIONS TO SCALING IN PHASE-ORDERING KINETICS
P~a,a!5
1

a
f 0~1!1

1

a11v
f 1~1!1•••, ~27!

where f 0(x), f 1(x) are the scaling and correction-to-scalin
functions for the domain-size distribution,f0, f1 are the
corresponding Laplace transforms, andv is the correction-
to-scaling exponent as usual. Inserting Eqs.~26! and ~27!
into Eq. ~25!, and equating leading and subleading ter
gives

df0

ds
52 f 0~1!

exp~2s!

s
~12f0

2!, ~28!

df1

ds
5S v

s
12 f 0~1!

exp~2s!

s
f0Df1

2 f 1~1!
exp~2s!

s
~12f0

2!, ~29!

where s5pa. With the boundary conditionsf0(`)50
~which follows from the definition off0) and f1(0)50
@which follows from the normalization ofP( l ,a)#, these
equations can be integrated to give

f0~s!5tanhS f 0~1!E
s

`dt

t
exp~2t ! D , ~30!

f1~s!5 f 1~1!sv@12f0
2~s!#E

s

` dt

t11v
exp~2t !. ~31!

Consider first the scaling functionf0(s). For smalls, one
obtains f0(s)5122e2 f 0(1)g s2 f 0(1)1•••, where g
50.577, . . . is Euler’s constant. But, from the definition o
f0(s) as the Laplace transform off 0(x), one also has
f0(s)512s^x&01•••, where^x&0 is the mean domain siz
~in units of the minimum domain sizea) for the scaling
distribution. Comparing these expansions givesf 0(1)<1/2,
with f 0(1)51/2 when the first moment off 0(x) exists, and
f 0(1),1/2 when it does not. We shall primarily consider t
former case, appropriate to an initial distribution with a fin
first moment.

Now consider the small-s behavior of the correction-to
scaling functionf1(s). The factor 12f0

2(s) in Eq. ~31! be-
haves ass2 f 0(1) for s→0, i.e., ass for f 0(1)51/2. For this
case, the small-s expansion off1(s) contains a nonanalytic
term s11v for any v.0 ~with a lns factor whenv is an
integer!. This in turn implies that the correction-to-scalin
function f 1(x) has the power-law tailx2(21v). This means
that if the domain-size distribution is given by the scali
distribution f 0(x) plus a small perturbation with a power-la
tail x2(21v), the perturbation isirrelevant ~i.e., decays to
zero! for v.0, andthe correction-to-scaling exponent isv.
More generally, any initial distribution with a power-law ta
x2(21v), with v.0, flows to the scaling distributionf 0(x)
with f 0(1)51/2. For v,0, the perturbation is relevant. I
this connection one should note that the scaling distributi
with f 0(1),1/2 have the power-law tailx2@112 f 0(1)#, i.e.,
they decay moreslowly than 1/x2. So any initial condition
that falls off more quickly than one of these ‘‘special’’ fixe
s

s

distributions flows to the ‘‘generic’’ fixed distribution with
f 0(1)51/2 ~which may easily be shown to have an expone
tial tail!.

We have shown that any finite correction-to-scaling exp
nentv corresponds to a correction-to-scaling function with
power-law tail. This implies that corrections to scaling th
decay faster than any power-law in the scaling variablex
have an infinite correction to scaling exponent, i.e., that
amplitude of the correction does not have the power-l
form a2v assumed in Eq.~26!. To clarify this case, we con
struct the exact solution of Eq.~25! for an arbitrary initial
condition:

f~p,a!5tanhF E
a

`

da8P~a8,a8! exp~2pa8!G . ~32!

The arbitrary function ofp that formally appears inside th
argument of the tanh, as an additive integration const
must vanish becausef(p,`)50. The functionP(a,a) ap-
pearing in Eq.~32! is determined by the initial condition, fo
which a5a0, through the inverse Laplace transform

P~a,a!5E
C

dp

4p i
exp~pa! lnS 11f~p,a0!

12f~p,a0! D , ~33!

where the contourC runs parallel to the imaginary axis, t
the right of any singularities of the integrand. An equivale
result has been presented in@14#. The present approach i
more direct and general.

Equations~32! and ~33! represent an exact closed-for
solution for the full evolution from an arbitrary initial con
dition. For explicit results, however, one needs to be able
evaluate the Bromwich integral~33!. For illustrative pur-
poses, we consider two simple initial conditions. The first
the simple exponential distributionP( l ,0)5mexp(2ml),
with the Laplace transformf(p,0)5m/(p1m) ~i.e., a050
here!. Inserting this in Eq.~33! gives

P~a,a!5
1

2a
@12exp~22ma!#. ~34!

One sees thatP(a,a) approaches the scaling limit 1/2a ex-
ponentially fast as a function ofa, i.e., faster than any power
This is in accord with our result that a power-law correcti
to scaling is associated with power-law tails in the init
domain-size distribution. Inserting Eq.~34! into Eq. ~32!,
and expanding forma@1, gives

f~p,a!5f0~s!2
1

4ma
exp~22ma! exp~2s!@12f0~s!2#

1•••, ~35!

wheref0(s) ~with s5pa) is the scaling function. Again, the
correction is exponentially small.

Our second example shows that the correction to sca
can be an oscillatory function ofa. For P( l ,0)
5m2lexp(2ml), one obtainsf(p,0)5m2/(p1m)2. Inserting
this into Eq. ~33! gives P(a,a)5@122cos(ma)exp(2ma)
1exp(22ma)#/2a, so that the leading correction to scaling
the term involving cos(ma). The difference between this cas
and the first example is that in the former the singularities
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the functionh(p)[ ln$@11f(p,0)#/@12f(p,0)#% appearing
in Eq. ~33! are branch points on the real axis atp50 and
22m, whereas in the latter they are branch points atp50,
2(16 i )m and 22m. The leading scaling part 1/2a in
P(a,a) is associated with the singularity ofh(p) at p50.
The leading correction to scaling derives from the singula
with the largest real part~excludingp50). If this singularity
is off the real axis, the leading correction to scaling will
oscillatory. In all the other models considered in this pap
however, the leading correction to scaling is monotonica
decreasing function of time.

V. THE OJK THEORY

The theory of Ohta, Jasnow, and Kawasaki~OJK! @2# for
the pair correlation function of a nonconserved scalar fi
starts from the Allen-Cahn equation relating the interfa
velocity to its local curvature@6#. The theory is expressed i
terms of a ‘‘smooth’’ auxiliary fieldm(x,t) whose zeros give
the positions of the interfaces between domains of the
phases. The fieldm obeys the diffusion equation]m/]t
5¹2m ~we absorb the diffusion constant into the time sca!.
The initial conditions are taken to be Gaussian. The norm
ized pair correlation function ofm is

g~r ,t !5
^m~x,t ! m~x1r ,t !&

^m~x,t !2&
, ~36!

while the correlation function for the order-parameter fieldf
is

C~r ,t !5^sgn@m~x,t !# sgn@m~x1r ,t !#&5
2

p
sin21g~r ,t !.

~37!

Note that by using the sgn function to relate the order
rameter to the auxiliary field we are working in the ‘‘thi
wall’’ limit. This means that we are neglecting any corre
tions to scaling associated with the finite width of the dom
walls, and are focusing instead on corrections deriving fr
the initial conditions. This is the same approach that we
using throughout this paper.

It is simplest, in the first instance, to compute the corr
tions to scaling associated with the functiong(r ,t). If we
define h(r ,t)5^m(x,t) m(x1r ,t)&, then g(r ,t)5h(r ,t)/
h(0,t). From the diffusion equation form, one obtains im-
mediately (1/2)] th5¹2h, giving (1/2)] tg5¹2g1a(t)g,
where a(t)52@] tlnh(0,t)#/2. Sinceh satisfies a diffusion
equation, we know that for a short-ranged initial conditio
peaked aroundr 50, h(0,t);t2d/2 asymptotically, giving
a(t)→d/4t for large t. It is convenient, however, to incor
porate corrections to scaling inL(t) through the requiremen
that a(t)5l/2L2 exactly, i.e., (1/2)] tg5¹2g1(l/2L2)g.
Choosing the scale ofL such thatL→t1/2 asymptotically
then fixesl5d/2, as in the large-n theory. Writing g(r ,t)
5g0(r /L)1L2vg1(r /L), and L̇51/2L1b/L11v, as usual,
substituting into the equation forg, and equating leading an
next-to-leading powers ofL, gives

g091S d21

x
1

x

4Dg081
d

4
g050, ~38!
y

r,
y

d
e

o

l-

-

n

re

-

,

g191S d21

x
1

x

4Dg181S d1v

4 Dg11
b

2
xg0850. ~39!

In fact these equations are identical to Eqs.~19! and ~20! of
the large-n theory, with the same boundary conditions, a
the results forg0 andg1 can be simply read off:

g0~x!5exp~2x2/8!, ~40!

g1~x!5@bx4/32~d12!# exp~2x2/8!. ~41!

The correction-to-scaling exponent isv54, as in the large-n
theory.

The order-parameter correlation functionC(r ,t) has the
expansionC(r ,t)5 f 0(r /L)1L2v f 1(r /L)1•••. The func-
tions f 0(x) and f 1(x) follow immediately from Eqs.~37!,
~40!, and~41!:

f 0~x!5
2

p
sin21g0~x!, ~42!

f 1~x!5
2

p

g1~x!

@12g0
2~x!#1/2

. ~43!

Note thatf 1(x);x3 for small x, so that the linear term inx
from f 0 is not modified—our definition ofL has ensured tha
areal density of domain walls, and therefore the energy, v
ies as 1/L exactly.

VI. THE MAZENKO THEORY

An alternative ‘‘Gaussian closure’’ theory to that of OJ
has been proposed by Mazenko@3#. For nonconserved scala
fields, the pair correlation functionC(r ,t) satisfies the closed
equation

1

2

]C

]t
5¹2C1

1

pS0~ t !
tanS p

2
CD . ~44!

The functionS0(t) is defined aŝ m(r ,t)2&, where m is a
Gaussian auxiliary field as before. For the present purpo
however, it is sufficient to note thatS0 has dimensions
(length)2. In fact, it is convenient to define the coarseni
length scaleL(t) by S05L2/l, wherel is a constant whose
value is fixed by physical requirements@3#. This definition of
L is in accord with our previous definitions, as we shall s

Writing S05L2/l in Eq. ~44!, setting C(r ,t)5 f 0(r /L)
1L2v f 1(r /L)1•••, dL/dt51/2L1b/L11v1•••, and
equating leading and next-to-leading powers ofL in the
usual way gives the following equations for the functio
f 0(x) and f 1(x):

f 091S d21

x
1

x

4D f 081
l

p
tanS p

2
f 0D50, ~45!

f 191S d21

x
1

x

4D f 181
l

2
sec2S p

2
f 0D f 11

v

4
f 11

b

2
x f0850.

~46!

Equation ~45! is to be solved with boundary condition
f 0(0)51, f 8(0)52(1/p)@2l/(d21)#1/2, the latter follow-
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ing from a small-x analysis of the equation. The parameterl
is determined as follows@3#. For largex, Eq. ~45! reduces to
the linear equation f 091@(d21)/x1x/4# f 081(l/2) f 050.
This equation has the same form as the large-n equation~19!,
and the two linearly independent large-x solutions have the
large-x forms x22l and;exp(2x2/8) discussed in Sec. III
If the equation is integrated forward fromx50, for general
l a linear combination of the two large-x solutions will be
obtained. But a power-law decay is unphysical if the init
conditions contain only short-range spatial correlations. T
parameterl is fixed by the requirement that this unphysic
power-law decay be absent. Imposing this condition throu
a numerical solution of Eq.~45! gives l50.711 277 ford
52, andl51.327 411 ford53 ~correct to the number o
figures given!. The exponentl̄, which describes the decay o
the autocorrelation function viâf(x,t)f(x,0)&;L(t)2 l̄, is
given byl̄5d2l within this theory@4#. Ford→`, the OJK
solution is recovered andl→d/2.

The correction to scalingv is determined in a similar way
from Eq. ~46!. The boundary conditions on this equation a
f 1(0)505 f 18(0). For largex, the homogeneous part of th
equation~i.e., without the final term! reduces to the homo
geneous part of the equivalent large-n equation~20!. The
two linearly independent large-x solutions decay as;exp
(2x2/8) and;x22l2v. The exponentv is determined by the
condition that the power-law decaying term is absent fr
the large-x solution. Implementing this condition numer
cally gives v53.8836 ford52 and v53.9030 ford53.
For d→`, the OJK resultv54 is recovered.

Figures 1 and 2 show the scaling and correction-to-sca
functions for d52 ~those ford53 are very similar!. The
amplitudeof the correction to scaling function is fixed by th
constantb in equation~46!. The valueb52 was used in Fig.
2.

Note that, within the Mazenko approach, the exponenv
is nontrivial. Indeed in this theoryv is on the same footing
as l̄, which is known to be nontrivial in general. This su
gests that, likel̄, the correction-to-scaling exponentv is in
general a nontrivial exponent of phase-ordering kinetics.

VII. CONCLUSION

An understanding of the corrections to scaling is imp
tant in analyzing data from experiments or simulations.

FIG. 1. The scaling functionf 0(x) in the Mazenko theory for
d52.
l
e
l
h

g

-
n

this paper we have computed the correction-to-scaling ex
nentsv, and the corresponding correction-to-scaling fun
tions, for a number of models of phase-ordering dynam
For simplicity we have focused on the correction to scal
associated with the approach of the order-parameter m
phology to its scaling form, i.e., the correction arising from
nonscaling initial condition, and have suppressed contri
tions associated with, for example, the finite thickness of
domain walls by working in the thin-wall limit.

In simple soluble models such as the ID Glauber mod
the n5` model, and the OJK theory, the exponentv takes
an integer value,v54. Within the Mazenko theory, how
ever,v takes nontrivial values, suggesting that this expon
is, in general, anew nontrivial exponentof phase-ordering
kinetics. The 1D TDGL equation is anomalous in that co
rections to scaling vanish exponentially fast as a function
the smallest domain size.

It is important to note that the values ofv computed in
this paper correspond to a special, though natural, defini
of the domain scaleL through the mean energy density. Sp
cifically the energy density is defined to be exactly 1/L ~up to
an overall constant! for the scalar models, i.e., the areal de
sity of domain walls is proportional to 1/L, except for the 1D
TDGL equation where the scale length was convenien
chosen to be the size of the smallest domain. For the largn
nonlinear sigma model, the energy density is defined to
exactly 1/L2, again up to an overall constant. These defi
tions of L are optimal in that they minimize the correction
to scaling, expressed in terms ofL, i.e. they maximizev.

In the present paper we have considered systems
nonconserved order parameter only. In future work we ho
to discuss corrections to scaling in systems with conser
order parameter.
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FIG. 2. The correction-to-scaling functionf 1(x) in the Mazenko
theory ford52.
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